شبیهسازی رواناب با استفاده از شبکه عصبی- موجکی (مطالعهی موردی: حوضهی آبخیز رود خِرسان3)
نویسنده
چکیده مقاله:
برآورد، پیشبینی و مدیریت رواناب همواره مورد توجه پژوهشگران بوده است؛ لذا با به کارگیری روشهای متداول و مرسوم هر دوره، اقدام به برآورد این پدیده به ظاهر زیانبار نموده اند که متأسفانه به دلیل پیچیدگی رابطهی بین بارش و رواناب، و غیر خطی بودن این رابطه، نتایج خیلی دقیقی را به دست نمیدادند. امروزه، پیشرفت علم و توسعهی روشهای نوین در همهی ابعاد علمی، امیدواری خوبی را در زمینهی شناخت و حل چنین روابطی به وجود آورده است. یکی از روشهایی که در چند دههی اخیر توجه محققین را به خود جلب کرده، استفاده از شبکههای عصبی است. در این پژوهش از شبیه عصبی- موجکی برای براورد رواناب در حوضهی آبخیز رود خِرسان3، استفاده شده است. سپس نتایج به دست آمده از این شبیه با نتایج شبکهی عصبیِ انتشار برگشتی و شبکهی عصبیِ بنیادی- شعاعی به عنوان شبیههای قدیمیتر مقایسه، و تجزیه و تحلیل گردید. بررسی دقت و مقایسه نتایج محاسبات باکاربرد ضریب همبستگی و ریشهی میانگین مربعات خطا صورت گرفت. نتایج این تحقیق نشان میدهند که دقت شبکهی عصبی- موجکی از شبکهی عصبی انتشار برگشتی، و شبکهی عصبی بنیادی- شعاعی در وضعیت بهتری قرار دارد.
منابع مشابه
الگوی جدید بارش- رواناب حوضه آبریز هلیل رود با استفاده از مدل هیبرید شبکه عصبی- موجکی
برآورد سیلاب و مدیریت آن از دیرباز مورد توجه کارشناسان و مدیران علوم محیطی بوده است. برای این امر روشهای بسیاری وجود دارد که یکی از چشمگیرترین آنها استفاده از شبکههای عصبی مصنوعی است. در این تحقیق، مدل بارش- رواناب حوضه آبریز رودخانه هلیل رود در جنوبشرق ایران ارائه شده است. ظهور تئوریهای توانمند مانند منطق فازی و شبکههای عصبی مصنوعی(ANN)، الگوریتم ژنتیک و موجک تحولی عظیم در تحلیل رفت...
متن کاملشبیه سازی رواناب با استفاده از شبکه عصبی- موجکی (مطالعه ی موردی: حوضه ی آبخیز رود خِرسان3)
برآورد، پیشبینی و مدیریت رواناب همواره مورد توجه پژوهشگران بوده است؛ لذا با به کارگیری روشهای متداول و مرسوم هر دوره، اقدام به برآورد این پدیده به ظاهر زیانبار نموده اند که متأسفانه به دلیل پیچیدگی رابطهی بین بارش و رواناب، و غیر خطی بودن این رابطه، نتایج خیلی دقیقی را به دست نمیدادند. امروزه، پیشرفت علم و توسعهی روشهای نوین در همهی ابعاد علمی، امیدواری خوبی را در زمینهی شناخت و حل چنین ر...
متن کاملشبیه سازی رواناب با استفاده از شبکه عصبی- موجکی (مطالعه ی موردی: حوضه ی آبخیز رود خِرسان۳)
برآورد، پیشبینی و مدیریت رواناب همواره مورد توجه پژوهشگران بوده است؛ لذا با به کارگیری روشهای متداول و مرسوم هر دوره، اقدام به برآورد این پدیده به ظاهر زیانبار نموده اند که متأسفانه به دلیل پیچیدگی رابطهی بین بارش و رواناب، و غیر خطی بودن این رابطه، نتایج خیلی دقیقی را به دست نمیدادند. امروزه، پیشرفت علم و توسعهی روشهای نوین در همهی ابعاد علمی، امیدواری خوبی را در زمینهی شناخت و حل چنین ر...
متن کاملالگوی جدید بارش- رواناب حوضه آبریز هلیل رود با استفاده از مدل هیبرید شبکه عصبی- موجکی
برآورد سیلاب و مدیریت آن از دیرباز مورد توجه کارشناسان و مدیران علوم محیطی بوده است. برای این امر روش های بسیاری وجود دارد که یکی از چشم گیرترین آن ها استفاده از شبکه های عصبی مصنوعی است. در این تحقیق، مدل بارش- رواناب حوضه آبریز رودخانه هلیل رود در جنوب شرق ایران ارائه شده است. ظهور تئوری های توانمند مانند منطق فازی و شبکه های عصبی مصنوعی(ann)، الگوریتم ژنتیک و موجک تحولی عظیم در تحلیل رفتار س...
متن کاملمدلسازی بارش- رواناب با استفاده از شبکه عصبی مصنوعی و شبکه فازی- عصبی تطبیقی در حوزه آبخیز کسیلیان
Rainfall runoff modeling and prediction of river discharge is one of the important practices in flood control and management, hydraulic structure design and drought management. The present article aims to simulate daily streamflow in Kasilian watershed using an artificial neural network (ANN) and neuro-fuzzy inference system (ANFIS). The intelligent methods have the high potential for dete...
متن کاملشبیه سازی بارش- رواناب با استفاده از شبکه عصبی مصنوعی(مورد: حوضه آبخیز فریدن)
سیل، یکی از پدیدههای ویرانگر طبیعی است که پیشبینی آن از اهمیت بالایی برخوردار است و در این میان برآورد بارش- رواناب به دلیل تأثیرگذاری عوامل مختلف، دشوار است. در این پژوهش با استفاده از شبکه پرسپترون چند لایه(MLP)، قانون یادگیری پسانتشار خطا(BP)، الگوریتم لونبرگ- مارکوارت(LM) و معیارهای RMSE و R2 جهت کارایی مدل، 6 سناریو تعریف گردید. بررسی حالات مختلف نشان داد که بهترین مدل شبکه عصبی جهت شبی...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 8 شماره 24
صفحات 1- 14
تاریخ انتشار 2015-04-21
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023